Integrative Physiology AMP-Activated Protein Kinase Regulates E3 Ligases in Rodent Heart

نویسندگان

  • Kedryn K. Baskin
  • Heinrich Taegtmeyer
چکیده

Rationale: The degradation of proteins by the ubiquitin proteasome system (UPS) is required for the maintenance of cellular homeostasis in the heart. An important regulator of metabolic homeostasis is AMP-activated protein kinase (AMPK). AMPK activation inhibits protein synthesis and activates autophagy, but whether AMPK plays a role in regulating protein breakdown through the UPS in the heart is not known. Objective: To determine whether AMPK enhances UPS-mediated protein degradation by directly regulating the ubiquitin ligases Atrogin-1 and muscle RING finger protein 1 (MuRF1) in the heart. Methods and Results: Nutrient deprivation and pharmacological or genetic activation of AMPK increased mRNA expression and protein levels of Atrogin-1 and MuRF1 and consequently enhanced protein degradation in neonatal cardiomyocytes. Inhibition of AMPK abrogated these effects. Using gene reporter and chromatin immunoprecipitation assays, we found that AMPK regulates MuRF1 expression by acting through the myocyte enhancer factor 2 (MEF2). We further validated these findings in vivo using MEF2-LacZ reporter mice. Furthermore, we demonstrated in adult cardiomyocytes that MuRF1 is necessary for AMPK-mediated proteolysis through the UPS in the heart. Consequently, MuRF1 knockout mice were protected from severe cardiac dysfunction during fasting. Conclusions: AMPK regulates the transcription of Atrogin-1 and MuRF1 and enhances UPS-mediated protein degradation in heart. Specifically, AMPK regulates MuRF1 through the transcription factor MEF2. The absence of MuRF1 in the heart preserves cardiac function during fasting. The results strengthen the hypothesis that AMPK serves as a modulator of intracellular protein degradation in the heart. (Circ Res. 2011;109:1153-1161.)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AMP-activated protein kinase regulates E3 ligases in rodent heart.

RATIONALE The degradation of proteins by the ubiquitin proteasome system (UPS) is required for the maintenance of cellular homeostasis in the heart. An important regulator of metabolic homeostasis is AMP-activated protein kinase (AMPK). AMPK activation inhibits protein synthesis and activates autophagy, but whether AMPK plays a role in regulating protein breakdown through the UPS in the heart i...

متن کامل

Insulin down-regulates the expression of ubiquitin E3 ligases partially by inhibiting the activity and expression of AMP-activated protein kinase in L6 myotubes

While insulin is an anabolic hormone, AMP-activated protein kinase (AMPK) is not only a key energy regulator, but it can also control substrate metabolism directly by inducing skeletal muscle protein degradation. The hypothesis of the present study was that insulin inhibits AMPK and thus down-regulates the expression of the ubiquitin E3 ligases, muscle atrophy F-box (MAFbx) and muscle RING fing...

متن کامل

Chronic alcohol consumption disrupts myocardial protein balance and function in aged, but not adult, female F344 rats.

The purpose of this study was to assess whether the deleterious effect of chronic alcohol consumption differs in adult and aged female rats. To address this aim, adult (4 mo) and aged (18 mo) F344 rats were fed a nutritionally complete liquid diet containing alcohol (36% total calories) or an isocaloric isonitrogenous control diet for 20 wk. Cardiac structure and function, assessed by echocardi...

متن کامل

A homolog of the E3 ubiquitin ligase Rbx1 is induced during hyperosmotic stress of salmon.

Juvenile salmon migrating from freshwater to the marine environment confront a marked change in environmental osmolality. Using differential display of mRNA expression, we cloned a 1.9-kb cDNA upregulated in isolated tissues of salmon exposed to the hyperosmotic stress associated with transition to the dehydrating marine environment. The cDNA codes for a 21-kDa protein, salmon hyperosmotic prot...

متن کامل

Phosphorylation of E3 Ligase Smurf1 Switches Its Substrate Preference in Support of Axon Development

Ubiquitin E3 ligases serve for ubiquitination of specific substrates, and its ligase efficacy is regulated by interacting proteins or substrate modifications. Whether and how the ligases themselves are modified by cellular signaling is unclear. Here we report that protein kinase A (PKA)-dependent phosphorylation of Smad Ubiquitin Regulatory Factor 1 (Smurf1) can switch its substrate preference ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011